Job-to-Job Flows (J2J):
New public use data on worker flows across jobs

LED Webinar
December 2015

Erika McEntarfer
Lead Economist
Longitudinal Household Dynamics (LEHD) Program
Center for Economic Studies
U.S. Census Bureau

Joyce Hahn
Analyst
Abt. Associates
& LEHD Program
U.S Census Bureau
Job-to-Job Flows (J2J) fills an important data gap:

In 2000, about ½ of all hires were workers moving from one job to another.
- Most job vacancies are not for entry-level workers

Most job moves are moves ‘up the job ladder’
- ½ of wage growth for young workers is from job change (Topel & Ward, 1992).
- Procyclical worker reallocation from lower paying to higher paying firms (Haltiwanger, Hyatt, & McEntarfer, 2015; Kahn & McEntarfer, 2014).

Better understanding of worker moves across industries and labor markets
Anticipated J2J data users:

Federal policy makers interested in the overall health of the labor market
 - 70% of decline in hires in Great Recession was decline in job-to-job moves.

State governors, economic development, and labor market analysts
 - concerned about losing workers to job opportunities in other states, more information about own in-migrants
 - better targeting trade adjustment labor training

Academic and non-profit researchers
 - interested in the reallocation of workers in response to demand shocks
National Job-to-Job Flows:
Steep decline in job change in last two recessions

Note: Source: Job-to-Job Flows, national data. Shaded regions indicate NBER recession quarters. All data are seasonally adjusted.
Within months of initial beta release, J2J appeared in the 2015 Economic Report of the President:

Figure 3-19

Hires, Separations, and Job-to-Job Flow Rates, 2000–2013

Note: J2J job-to-job hires are generally equal to J2J job-to-job separations (not shown). Shading denotes recession. Source: Bureau of Labor Statistics, Job Openings and Labor Turnover Survey; Census Bureau, Job-to-Job Flows.
Introduction to Job-to-Job Flows (J2J)

Key J2J statistics and how they compare to other available data

Taking the data for a drive:
- Where are North Dakota mining workers coming from?
- Where are Louisiana teachers going?
- Where did all the manufacturing workers go?

Walkthrough of how to generate examples above
Key J2J Files:

Count and rate files:

- Hires and separations, by whether or not the hire/separation was a job-to-job flow or an employment flow. Currently available by (more detailed tabs forthcoming in later releases):
 - National and state
 - By worker demographics
 - By industry sector, firm age and size
 - Seasonally adjusted and not seasonally adjusted data

Origin-Destination (OD) files:

- For job-to-job flows only: characteristics of origin and destination jobs. Currently available by (more detailed tabs forthcoming in later releases):
 - Origin State and Industry by Destination State and Industry
 - Origin State to Destination State by worker demographics
 - Origin State and (Age/Size) by Destination State and (Age/Size)
Job-to-job hires/separations:
- Hires and separations from one job to another, with little or no nonemployment between job spells
 - EEHire/EESep: Hires and separations, job change occurs within the quarter
 - AQHire/AQSep: Hires and separations, job change occurs across the quarter
 - J2JHire/J2JSep: Sum of EE and AQ, our preferred measure of hires/separations associated with job change

Hires/separations from/to persistent nonemployment:
- Hires and separations to/from longer nonemployment spells
 - NEPersist/ENPersist: Hires and separations where worker is not employed at either end of the quarter prior to hire/after separation
 - NEFullQ/ENFullQ: Subset of NEPersist/ENPersist, hires and separations where worker is not employed for the entire quarter prior to hire/after separation
Conceptually, a flow chart (hires):

1. New Main Hire into Manufacturing firm
2. Did worker hold a different main job at the start of this quarter?
 - Yes
 - Did worker leave this job during the quarter?
 - Yes
 - A within-quarter job change (EEHire)
 - No
 - No job held at start of quarter
3. Did he hold another main job at the start of the previous quarter?
 - Yes
 - An adjacent-quarter job change (AQHire)
 - No
 - No job held at start of previous quarter
4. Hire from persistent nonemployment (NEHire)
How do J2J compare to other related series?:
Comparison to JOLTS: Layoffs

Note: Shaded regions indicate NBER recession quarters. All data are seasonally adjusted. These J2J tabulations do not include planned adjustments to the J2J series to account for partially-missing geography early in the time series.
Comparison to JOLTS: Quits

Note: Shaded regions indicate NBER recession quarters. All data are seasonally adjusted. These J2J tabulations do not include planned adjustments to the J2J series to account for partially-missing geography early in the time series.
J2J separations-to-employment vs. CPS employer-to-employer flows

Note: Shaded regions indicate NBER recession quarters. All data are seasonally adjusted. These J2J tabulations do not include planned adjustments to the J2J series to account for partially-missing geography early in the time series.
Taking the J2J data for a drive:

Example 1: Where are North Dakota mining workers coming from?
Net migration of out-of-state workers into the North Dakota mining sector: 2010-2014

Source: U.S. Bureau of Census, Job-to-Job Flows

The map shows the net migration of out-of-state workers into the North Dakota mining sector. The color coding indicates the number of workers: Less than 249, 250-499, 500-999, and 1000+. The net migration is calculated as hires into the North Dakota mining sector of workers who recently held a job in a different state, minus flows of North Dakota mining workers to jobs in that state.

Source: J2J prototype origin-destination data. J2J data is not yet available for Massachusetts and Kansas, data for all other states is present.
Net in-state inflows into the North Dakota mining sector: 2010-2014

Source: J2J prototype origin-destination data. Net in-state inflows is hires into the North Dakota mining sector of workers who recently held a job in a different industry in North Dakota, minus flows of North Dakota mining workers to jobs in that industry in North Dakota.
Example 2:

Where are Louisiana’s teachers going?
Joyce was in AmeriCorps in the Baton Rouge area after Katrina...

- She worked in the local schools
- There were serious problems with teacher retention
 - There were concerns that Katrina evacuees that were teachers weren’t coming back to Louisiana
 - That they found jobs and stayed put

- So in this example, we look at the J2J data to answer the question Joyce had back in 2007
 - How many teachers are leaving Louisiana for other education jobs?
Louisiana education workers leaving to take education jobs out-of-state: 2005.3-2014.2

Source: U.S. Bureau of Census, Job-to-Job Flows

Source: J2J prototype origin-destination data. J2J data is not yet available for Massachusetts and Kansas, data for all other states is present.
Louisiana education workers leaving to take non-education jobs out-of-state: 2005.3-2014.2

Louisiana Educational Services, Separations
Source: U.S. Bureau of Census, Job-to-Job Flows

Source: J2J prototype origin-destination data. J2J data is not yet available for Massachusetts and Kansas, data for all other states is present.
In-state separations from the Louisiana education sector: 2005.3-2014.2

Source: U.S. Bureau of Census, Job-to-Job Flows
Example 3:

Where did all the manufacturing workers go?
There was a surprisingly swift decline in U.S. manufacturing employment between 2000-2013.
J2J: decompose employment decline into flows to other industries vs. flows to long nonemployment spells

Net employment gain from workers moving from other industries to manufacturing

Net employment change, manufacturing

Net employment gain/loss from cross-industry job-to-job moves (natl)

Net employment gain/loss from workers moving in/out of employment (natl)

Net employment change

Net employment decline, worker separations to long nonemployment spells
Separation rates from manufacturing to other industries

Blue: Separation rate of manufacturing workers to low-wage services

Red: Separation rate of manufacturing workers to construction jobs

United States Census Bureau
U.S. Department of Commerce
Economics and Statistics Administration
U.S. CENSUS BUREAU
census.gov
What happened to downsized manufacturing workers who experienced longer nonemployment spells?:

J2J OD currently available only for workers with less than 4-6 months of nonemployment between job spells

We hope to be able to release OD data for workers with longer nonemployment spells in later releases.

For now, I can tell you a little about what happened to them: For the 2000-2003 separators:

- \(~35\%\) recalled to previous employer or found another manufacturing job
- \(~45\%\) found jobs in other industries
 - \(\frac{1}{2}\) of these after a nonemployment spell of over a year, mostly appear to become general laborers and truck drivers
- \(~20\%\) have no subsequent UI-covered employment.
How to do the examples shown here: a walkthrough of how to use the beta data

A J2J data application is coming!

But until it’s here...things are a bit more basic
To start – how to find the beta J2J data:
Example 1:
How to get the data to make this map

Source: U.S. Bureau of Census, Job-to-Job Flows
First pull the industry sector level data

Select Louisiana
Select the ‘OD’ file
Select ‘CVS’ format
Grab the ‘industry sector’ file
Keep geography, industry, year, quarter, geography_orig, industry_orig, EE, and AQHire. Delete all other columns.
Then filter `geography_orig` to obtain the origin state of interest.
Then filter industry_orig to obtain the origin industry of interest. Repeat with industry for the destination industry of interest.
Then filter years to obtain the period of interest. (In the interest of time, let’s choose only one quarter: 2005.1)
Then sum EE and AQHire to get all Outflows for every state by year and quarter.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>geography</td>
<td>industry</td>
<td>year</td>
<td>quarter</td>
<td>geography_orig</td>
<td>industry_orig</td>
<td>EE</td>
<td>AQHire</td>
<td>Outflows</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>399</td>
<td>263</td>
<td>=sum(G2:H2)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>18</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>22</td>
<td>61</td>
<td>2005</td>
<td>1</td>
<td>22</td>
<td>61</td>
<td>315</td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 2: How to make this graph

Note: Source: Job-to-Job Flows, national data. Shaded regions indicate NBER recession quarters. All data are seasonally adjusted.
First access the data

We’re using national data this time

Grab the ‘rates’ file

Grab ‘all demographics, all industries, all firm size/age, seasonally adjusted’ file
Job-to-Job Flow Rates

Source: United States Census Bureau

Release: 2014Q3

Data Schema version: V4.1-draft

National rates, all firms, all workers (Seasonally Adjusted)

<table>
<thead>
<tr>
<th>periodicity</th>
<th>seasonadj</th>
<th>geo_level</th>
<th>geography</th>
<th>ind_level</th>
<th>industry</th>
<th>ownercode</th>
<th>sex</th>
<th>agegrp</th>
<th>race</th>
<th>ethnicity</th>
<th>education</th>
<th>firmage</th>
<th>firm</th>
</tr>
</thead>
</table>
Recall that Main Hires is the sum of:

* J2JHire (hires of workers changing jobs)
* NEPersist (hires of workers from persistent nonemployment spells)

Hide everything except the variables you want to graph.
Approximately 70% of the fall in hiring in the Great Recession was due to a fall in job change.

Blue: Decline in hires and separations due to job change.

Red: Decline in hires and separations due to employment flows.
Example 3: How to make this graph

Net employment gain from workers moving from other industries to manufacturing

Net employment change, manufacturing

Net employment gain/loss from cross-industry job-to-job moves (natl)

Net employment gain/loss from workers moving in/out of employment (natl)

Net employment change

Net employment decline, worker separations to long nonemployment spells
First pull the industry sector level data

We’re using national but state files also available

Grab the ‘rates’ file

This time, grab the ‘industry sector’ file
Then filter to obtain the industry sector of interest.
At national level, J2JHire/J2JSep cancel out but not here.

We are using the same four variables as before.

Can make the same graph as before, but may not be the most effective way to display the information.
Net employment growth in industry = Net growth from industry switching + net growth from employment flows

Net employment growth rate from job change (J2JHireR-J2JSepR)

Net employment growth from employment flows (NEPersistR-ENPersistR)

Net employment growth (sum of 1 and 2)
Questions or comments:

Erika McEntarfer
erika.mcentarfer@census.gov

Joyce Hahn
joyce.key.hahn@census.gov